WNE Linear Algebra
Sample Exam Questions

Please give reasons for your answers. If the answer is negative, please provide a counterexample.

Question 1.

If $A x=b$ is a non-homogeneous system of linear equations, is the zero vector a solution of that system?

Question 2.

If vectors $u, v \in \mathbb{R}^{4}$ are linearly independent and vectors $v, w \in \mathbb{R}^{4}$ are linearly independent, are vectors $u, v, w \in \mathbb{R}^{4}$ linearly independent?

Question 3.

If $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation and vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ are linearly dependent, does it follow that vectors $\varphi\left(v_{1}\right), \ldots, \varphi\left(v_{k}\right) \in \mathbb{R}^{m}$ are linearly dependent?

Question 4.

Is it possible that $A, B \in M(4 \times 4 ; \mathbb{R}), \operatorname{rk} A=\operatorname{rk} B=2$ but $\operatorname{rk}(A+B)=3$?
Question 5.
If $A \in M(2 \times 2 ; \mathbb{R})$, does there exist matrix $B \in M(2 \times 2 ; \mathbb{R})$ such that

$$
B^{2}=A ?
$$

Question 6.
If $A \in M(n \times n ; \mathbb{R})$ does it follow that for any $\alpha \in \mathbb{R}$

$$
\operatorname{det}(\alpha A)=\alpha^{n} \operatorname{det} A ?
$$

Question 7.

If $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an endomorphism and
i) $u \in \mathbb{R}^{n}$ is an eigenvector of φ for the eigenvalue $\lambda \in \mathbb{R}$,
ii) $v \in \mathbb{R}^{n}$ is an eigenvector of φ for the eigenvalue $\mu \in \mathbb{R}$,
is $u+v \in \mathbb{R}^{n}$ an eigenvector of φ for the eigenvalue $\lambda+\mu \in \mathbb{R}$?

Question 8.

If matrix $A \in M(n \times n ; \mathbb{R})$ is diagonalisable, does it follow that for any matrix $C \in M(n \times n ; \mathbb{R})$ such that $\operatorname{det} C \neq 0$, the matrix $C^{-1} A C$ is diagonalisable?

Question 9.

If $u, v \in V$ is a basis of a subspace $V \subset \mathbb{R}^{3}$ and $w \in V^{\perp}$ is a basis of the orthogonal completion $V^{\perp} \subset \mathbb{R}^{3}$, does it follow that $u, v, w \in \mathbb{R}^{3}$ is an orthogonal basis of \mathbb{R}^{3} ?

Question 10.

If $V \subset \mathbb{R}^{n}, V \neq \mathbb{R}^{n}$ is a subspace and $P_{V}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the orthogonal projection onto V, does it follow that 0 is an eigenvalue of P_{V} ?

Question 11.

If $Q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a quadratic form, $\mathcal{B}=\left(v_{1}, v_{2}\right)$ is a basis of \mathbb{R}^{2} and

$$
Q\left(v_{1}\right), Q\left(v_{2}\right)>0,
$$

does it follow that the form Q is positive definite?
Question 12.
If $A, B \in M(n \times n ; \mathbb{R})$ are symmetric matrices, is the matrix $A+B^{\top}$ symmetric?

Question 13.

Is it possible for a linear programming problem in 2 variables not to have an optimal solution?

